Ultrafast dynamics in the power stroke of a molecular rotary motor.

نویسندگان

  • Jamie Conyard
  • Kiri Addison
  • Ismael A Heisler
  • Arjen Cnossen
  • Wesley R Browne
  • Ben L Feringa
  • Stephen R Meech
چکیده

Light-driven molecular motors convert light into mechanical energy through excited-state reactions. Unidirectional rotary molecular motors based on chiral overcrowded alkenes operate through consecutive photochemical and thermal steps. The thermal (helix inverting) step has been optimized successfully through variations in molecular structure, but much less is known about the photochemical step, which provides power to the motor. Ultimately, controlling the efficiency of molecular motors requires a detailed picture of the molecular dynamics on the excited-state potential energy surface. Here, we characterize the primary events that follow photon absorption by a unidirectional molecular motor using ultrafast fluorescence up-conversion measurements with sub 50 fs time resolution. We observe an extraordinarily fast initial relaxation out of the Franck-Condon region that suggests a barrierless reaction coordinate. This fast molecular motion is shown to be accompanied by the excitation of coherent excited-state structural motion. The implications of these observations for manipulating motor efficiency are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Dynamics of the Levels of Low Molecular Weight DNA Fragments in Plasma of Patients With Ischemic and Hemorrhaging Strokes

Objective: To evaluate low-molecular-weight (LMW) DNA as possible prognostic biomarker in acute ischemic and hemorrhagic stroke. Methods:  LMW DNA samples were isolated from plasma and cerebrospinal fluid by phenol deproteinization, analyzed by gradient polyacrylamide electrophoresis and quantified by spectrophotometry. Results: Two common types of the stroke, ischemic and hemorrhagic, differ...

متن کامل

An ultrafast surface-bound photo-active molecular motor.

We report the synthesis and surface attachment of an ultrafast light-driven rotary molecular motor. Transient absorption spectroscopy revealed that the half-life of the rate determining thermal step of the rotary cycle in solution is 38 ± 1 ns, the shortest yet observed, making this the fastest molecular motor reported. Incorporation of acetylene legs into the structure allowed the motors to be...

متن کامل

Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation

Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...

متن کامل

Ultrafast rotary PCR system for multiple influenza viral RNA detection.

We presented a novel platform for an ultrafast PCR system, called the Rotary PCR Genetic Analyzer, which incorporates a thermal block and resistive temperature detector (RTD) for thermal cycling control, a disposable PCR microchip, and a stepper motor. The influenza viral RNAs from H3N2, H5N1, and H1N1 were simultaneously identified with high sensitivity and speed.

متن کامل

The Effect of rTMS with Rehabilitation on Hand Function and Corticomotor Excitability in Sub-Acute Stroke

Objectives: Stroke is the leading cause of long-term disability. Hand motor impairment resulting from chronic stroke may have extensive physical, psychological, financial, and social implications despite available rehabilitative treatments. The best time to start treatment for stroke, is in sub-acute period. Repetitive transcranial magnetic stimulation (rTMS) is a method of stimulating and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature chemistry

دوره 4 7  شماره 

صفحات  -

تاریخ انتشار 2012